Corrigendum: Abiotic ligation of DNA oligomers templated by their liquid crystal ordering

نویسندگان

  • Tommaso P. Fraccia
  • Gregory P. Smith
  • Giuliano Zanchetta
  • Elvezia Paraboschi
  • Youngwoo Yi
  • David M. Walba
  • Giorgio Dieci
  • Noel A. Clark
  • Tommaso Bellini
چکیده

It has been observed that concentrated solutions of short DNA oligomers develop liquid crystal ordering as the result of a hierarchically structured supramolecular self-assembly. In mixtures of oligomers with various degree of complementarity, liquid crystal microdomains are formed via the selective aggregation of those oligomers that have a sufficient degree of duplexing and propensity for physical polymerization. Here we show that such domains act as fluid and permeable microreactors in which the order-stabilized molecular contacts between duplex terminals serve as physical templates for their chemical ligation. In the presence of abiotic condensing agents, liquid crystal ordering markedly enhances ligation efficacy, thereby enhancing its own phase stability. The coupling between order-templated ligation and selectivity provided by supramolecular ordering enables an autocatalytic cycle favouring the growth of DNA chains, up to biologically relevant lengths, from few-base long oligomers. This finding suggests a novel scenario for the abiotic origin of nucleic acids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-to-end stacking and liquid crystal condensation of 6 to 20 base pair DNA duplexes.

Short complementary B-form DNA oligomers, 6 to 20 base pairs in length, are found to exhibit nematic and columnar liquid crystal phases, even though such duplexes lack the shape anisotropy required for liquid crystal ordering. Structural study shows that these phases are produced by the end-to-end adhesion and consequent stacking of the duplex oligomers into polydisperse anisotropic rod-shaped ...

متن کامل

Propagation of chirality in mixtures of natural and enantiomeric DNA oligomers.

Concentrated solutions of ultrashort duplex-forming DNA oligomers may develop various forms of liquid crystal ordering among which is the chiral nematic phase, characterized by a macroscopic helical precession of molecular orientation. The specifics of how chirality propagates from the molecular to the mesoscale is still unclear, both in general and in the case of DNA-based liquid crystals. We ...

متن کامل

Liquid Crystal Ordering of Four-Base-Long DNA Oligomers with Both G–C and A–T Pairing

We report the liquid crystal (LC) ordering in an aqueous solution of four-base-long DNA oligomers 5′-GCTA-3′. In such systems, the formation of the chiral nematic (N*) LC phase is the result of a continuous self-assembly process in which double helix stability is achieved only through linear chaining of multiple DNA strands. The thermal stability of the aggregates and their LC phase diagram hav...

متن کامل

“Self-assembly of DNA and RNA oligomers: liquid crystal ordering and autocatalysis”

The combination of solubility, coded pairing and adjustable flexibility make DNA a unique polymer for designing self-assembled nanostructures with highly controlled structure and mutual interactions. I will exemplify how these properties can be exploited to produce DNA-based systems enabling the exploration of challenging topics in the science of gels, polymers, liquid crystals, phase separations.

متن کامل

Templated blue phases.

Cholesteric blue phases of a chiral liquid crystal are interesting examples of self-organised three-dimensional nanostructures formed by soft matter. Recently it was demonstrated that a polymer matrix introduced by photopolymerization inside a bulk blue phase not only stabilises the host blue phase significantly, but also serves as a template for blue phase ordering. We show with numerical mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015